Fracture bone healing and biodegradation of AZ31 implant in rats.
نویسندگان
چکیده
The ideal temporary implant should offer enough mechanical support to allow healing of the fracture and then biodegrade and be resorbed by metabolic mechanisms without causing any toxic effect. The aim of this research has been to simultaneously study in situ bone healing and the biodegradation of AZ31 Mg alloy as an osteosynthesis material. The in vivo study was carried out in AZ31 implants with and without Mg-fluoride coating inserted in un-fractured and fractured femurs of Wistar rats for long experimentation time, from 1 to 13 months, by means of computed tomography, histological and histomorphometric analysis. Tomography analysis showed the bone healing and biodegradation of AZ31 implants. The fracture is healed in 100% of the animals, and AZ31 maintains its mechanical integrity throughout the healing process. Biodegradation was monitored, quantifying the evolution of gas over time by 3D composition of tomography images. In all the studied groups, gas pockets disappear with time as a result of the diffusion process through soft tissues. Histomorphometric studies reveal that after 13 months the 46.32% of AZ31 alloy has been resorbed. The resorption of the coated and uncoated AZ31 implants inserted in fractured femurs after 1, 9 and 13 months does not have statistically significant differences. There is a balance between the biodegradation of AZ31 and bone healing which allows the use of AZ31 to be proposed as an osteosynthesis material.
منابع مشابه
Analysis of metallic traces from the biodegradation of endomedullary AZ31 alloy temporary implants in rat organs after long implantation times.
AZ31 alloy has been tested as a biodegradable material in the form of endomedullary implants in female Wistar rat femurs. In order to evaluate the accumulation of potentially toxic elements from the biodegradation of the implant, magnesium (Mg), aluminium (Al), zinc (Zn), manganese (Mn) and fluorine (F) levels have been measured in different organs such as kidneys, liver, lungs, spleen and brai...
متن کاملHistological Evaluation of the Effect of Sildenafil and Pentoxifylline on Mandibular Fracture Healing in Rats
Background and Aim: Despite the advances in maxillofacial surgery, impaired bone healing remains a concern for surgical teams. Effects of sildenafil and pentoxifylline on healing of bone fractures have not been well investigated. This study aimed to assess the effects of sildenafil and pentoxifylline phosphodiesterase inhibitors on healing of mandibular fractures in rats. Materials and Methods...
متن کاملBasic Research on a Cylindrical Implant Made of Shape-Memory Alloy for the Treatment of Long Bone Fracture
The internal fixing materials made from shape-memory alloys (SMAs) have recently been reported for long bone fracture. We present a new internal fixation technique using a cylindrical SMAs implant in a rat femoral fracture healing. The implant was designed in a shape to circumferentially fix the fractured bone using resilient SMA claws. To evaluate the fixing ability of the implant, three-point...
متن کاملHealing the Bone
Healing of the bone is different with the other part of the body. Fracture healing is actually a bone regeneration with no scar tissues, where as in wound healing, injured tissue is replaced by connective tissue which became a scar, Traditionally fracture healing is divided in to 4 stages: 1) Stage of inflammation; 2) Stage of soft callus; 3) Stage of hard callus and 4) Stage of remodeling. In...
متن کاملEffects of Bone Marrow Mesenchymal Stem Cells-Conditioned Medium on Tibial Partial Osteotomy Model of Fracture Healing in Hypothyroidism Rats
Background: Hypothyroidism is associated with dysfunction of the bone turnover with reduced osteoblastic bone formation and osteoclastic bone resorption. Mesenchymal stem cells (MSCs) secrete various factors and cytokines that may stimulate bone regeneration. The aim of this study was to determine the effects of MSCs-conditioned medium (CM) in hypothyroidism male rats after inducing bone ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biomedical materials
دوره 10 2 شماره
صفحات -
تاریخ انتشار 2015